

WORKSHOP:

LE NUOVE TECNOLOGIE PER LA CHIRURGIA OFTALMICA. ASPETTI INNOVATIVI E DI SICUREZZA PER IL PAZIENTE

Forlì, 12 Aprile 2019 – Hotel Globus City, Sala Congressi America

iOCT Intra-operative OCT La Quarta Dimensione nell'Imaging intraoperatoio

Ing. Didier Goor

Leica Microsystems

Esempi Tipici d'immagini OCT

Esempi Tipici d'immagini OCT

What is OCT?

- Optical Coherence Tomography
 - Optical -> a light based imaging technology
 - Coherence -> signal is based on interferometry
 - Tomography -> produces 3D tomograms (volumes) composed of 2D slices (Bscans)
- OCT produces beautiful, high-resolution images with micron-scale resolution

How does it work?

- OCT is an optical analogue of ultrasound
 - Send light into tissue and measures the time it takes for the light to come back
 - This time of flight is too fast to be measured directly, so we use interferometry
 - Light from the reference arm interferes with light from the sample arm (in this case, 'the eye')
 - When the two arms are matched, we get an interference signal, allowing us to measure time of flight by scanning the reference arm

A-scans, B-scans, C-scans

- OCTs builds up images one "depth scan" (A-scan) at a time
- The beam is scanned in one dimension to produce a cross-sectional slice (B-scan)
- The beam is then scanned in the orthogonal dimension to build up multiple slices into a volume (or C-scan)

Resolution

- Axial and lateral resolution are decoupled, enabling each to be optimized independently for a particular application
 - Axial resolution: along the beam path (A-scan direction), distinguishes the layers of the cornea and retina
 - Lateral resolution: transverse to the beam path is similar to the resolution of the microscope view
- Axial resolution is dependent on the bandwidth and on wavelength of light source
 - Broader bandwidth & Short wavelength -> finer resolution -> shallower depth
 - Narrower bandwidth & Long wavelength -> coarser resolution -> deeper depth

OCT Depth & Resolution Trade-Off

Low dispersion spectrometer: less depth, greater resolution

Fold-over artifact

High dispersion spectrometer: greater depth, less resolution

OCT Depth & Resolution Trade-Off

Low dispersion spectrometer: less depth, greater resolution

High dispersion spectrometer: greater depth, less resolution

11.1 mm - 9 microns resolution Traction Retinal Detachment

2.5mm - 4 microns resolution Retinoblastoma

Setup Example on Microscope

Removable EnFocus OCT Imaging Head

OCT Terminal

Main alternatives on OCT beam injection

Main alternatives on OCT beam injection

Surgical Workflow Management

OCT Use:

- On-screen procedural pre-set modes
- Customizable scan management
- Image-guided dynamic scan control
- Integrated footpedal control
- On-screen caliper measurements

Example of Intrasurgical OCT image management software

Advantages and Clinical information Intraoperative Use Cases for OCT

- 29.2% of posterior cases had decisions change intraoperatively due to real time visualization of OCT
- 43.4% of anterior segment cases had decision change intraoperatively due to real time visualization of OCT

https://www.ncbi.nlm.nih.gov/pubmed/29409662

The DISCOVER Study 3-Year Results

Feasibility and Usefulness of Microscope-Integrated Intraoperative OCT during Ophthalmic Surgery

Advantages and Clinical information Intraoperative Use Cases for OCT

Procedure	Procedure Description	Relevant Anatomical Features Visualized by EnFocus OCT	
DALK	Deep Anterior Lamellar Keratoplasty – Removal of all corneal layers anterior to Descemet's membrane and replacement with donor tissue	 Visualization of air injection and measurement needle depth Visualization of removal of recipient stroma Caliper measurement of stromal thickness/trephine depth Caliper measurement of graft thickness Visualization of graft adherence and interface fluid 	
DSAEK	Descemet's Stripping Automated Endothelial Keratoplasty – Removal of Descemet's membrane and replacement with donor tissue, both stroma and Descemet's	 Visualization of removal of Descemet's membrane Visualization of graft orientation Visualization of graft adherence and interface fluid Caliper measurement of post-op corneal thickness 	
DMEK	Descemet's Membrane Endothelial Keratoplasty - Removal of Descemet's membrane and replacement with donor tissue, Descemet's only	 Visualization of removal of Descemet's membrane Visualization of graft orientation (scroll) Visualization of graft adherence 	
Cataract	Removal of cataract, implantation of IOL	 Visualization of residual epithelial cells in capsular bag Visualize settling of IOL Visualize adherence of posterior capsule to IOL 	
PPV	Pars Plana Vitrectomy – removal of vitreous, indicated for a wide variety of conditions including macular hole/pucker, vitreomacular traction, macular edema, vitreous hemorrhage, tractional retinal detactment and others	 Visualization of separation of posterior hyaloid membrane Visualization of retinal morphology including ERM, macular hole, edema, traction, etc. Visualization and caliper measurement of macular edema Visualization of macular hole and caliper measurement of hole thickness 	
Air/Fluid Exchange	Injection of air (or gas mixture) to seal retina, tamponade for macular hole • Visualization of retinal morphology • Visualization of macular hole		
ILM/ERM Peel	Peeling of inner limiting membrane or epiretinal membrane to release traction or facilitate macular hole closure	Visualization of removal of ILM/ERM from macula Visualization of residual ILM/ERM after peel Visualization of retinal morphology including macular hole, edema, traction, etc.	
EUA	Examination under anesthesia – visualization of retina under anesthesia for pediatric or uncooperative patients	 Visualization of retinal morphology Visualization of retinoblastoma Visualization of photocoagulation/laser burns 	
Macular buckle	Insertion of a macular buckle to support closure of a macular hole, particularly in high myopes	Visualization of macular buckle positioning underneath macular	
Retinal graft /scaffold Research Use Only	Experimental procedures where grafts or scaffolds are implanted	 Visualization of subretinal air injection and subretinal bleb Visualization of graft location and orientation Visualization of retinal morphology following gas exchange 	

Advantages and Clinical information Example Anterior Segment

 Intraoperative OCT crosssectional view of thin DMEK donor tissue being positioned for graft

OCT Use:

- Visualization of removal of Descemet's membrane
- Visualization of graft orientation (scroll)
- Visualization of graft adherence

Advantages and Clinical information Example Posterior Segment

Macular hole measurement and comparison.

Time Stamp 3:02 pm

Time Stamp 3:20 pm

Time Stamp 3:34 pm

Sicurezza per il paziente

- Dispositivo medicale Classe II
- EN ISO 134855, Medical devices -- Quality management systems --Requirements for regulatory purposes
 - Scope: Design and Development, Production and Distribution, Installation and Servicing of Ophthalmic Imaging Systems
- EC Certificate (Directive 93/42/EEC on Medical Device)
- Spectral Domain Ophthalmic Imaging System (SDOIS) should comply with the Group 2 instrument requirements of ISO 15004-2:2007.
- iOCT systems are generally indicated for use as an aid in the visualization of physiologic and pathologic conditions of the eye through non-contact optical imaging.

Necessità Manutentive

- Scan head optics cleaning
 - Standard optics cleaning apply

Description	Cleaning
System	Alcohol wipe-down
Scanner	Cleaning required between uses.
Cart	Alcohol wipe-down
Foot ped al	Alcohol wipe-down
UPS	Alcohol wipe-down

- Regular Data Backup management
- Calibration:
 - iOCT might require calibration at installation time to fit the microscope it is coupled with. Changes to the microscope or camera might require re-calibration

Impatto Economico

- The iOCT can be purchased installed simultaneously to the microscope or at a later stage
- Impact of the iOCT system can have an order of magnitude of about 30% to 40% of the budget for a microscope plus iOCT
- Several levels of optional maintenance contracts are normally available

Diffusione

 The iOCT is a relatively recent technique with a limited but growing penetration mainly in US and in Europe Thank you

(Backup slides)

Esempi di Specifiche Techniche

Method of operation		Spectral Domain Optical Coherence Tomography (SD-OCT)		
Internal light source		800nm band SLD: Very High Resolution (VHR) ≥ 90nm bandwidth FWHM 860nm center ±5 nm	800nm band SLD: High Resolution (HR) ≥ 40nm bandwidth FWHM 880nm center ±5 nm	
Objective lens options		175mm (177.5mm) working distance (201.8mm focal length) 200mm (203mm) working distance (227mm focal length)		
Patient interface		Non-patient contact		
Optical power		≤ 750 µW		
Scanner ergonomics		Microscope mounted		
Scan patterns		Line, rectangular volume, circle, concentric rings (annular volume), radial lines (radial volume)		
Field of view	Axial (air/tissue)	3.4 ± 0.1 mm / 2.5 ± 0.1 mm	15.3 ±0.3 mm / 11.1 ±0.2 mm	
	Lateral	≥ 20 mm		
Resolution	Axial (in tissue)	$VHR: \le 4\mu m$	$HR: \le 9\mu m$	
	Lateral	175mm Objective: $<$ 31.5 μm (low NA) and $<$ 15.0 μm (high NA) 200mm Objective: $<$ 33.3 μm (low NA) and $<$ 15.7 μm (high NA)		
Scan rate (aka acquisition speed)		≥ 32,000 A-scans/s	≥ 18,000 A-scans/s	
Scan pixels	Axial	1024 pixels	2048 pixels	
	Lateral	User selectable, A-scans/B-scan: 2000 maximum		
		Maximum A-scans/volume: ≥ 1,000,000	Maximum A-scans/volume: ≥ 500,000	
Pixel resolution, axial (air/tissue)		3.3 µm / 2.4 µm	7.5 μm / 5.4 μm	
Sensitivity fall-off		-2.1 dB/mm	-0.84 dB/mm	
Calipers		Manual placement of on-screen calipers		
Doppler		Qualitative blood flow visualization with color Doppler OCT		
Memory		16 GB		
Computer Storage		1TB Redundant Data Storage and 250GB Operating Drive		
Image Storage		Full volume OCT images		
Image Display Resolution		1920 x 1080		
Contrast Ratio		1000 : 1		